A fast multipole boundary element method for 2D multi-domain elastostatic problems based on a dual BIE formulation
نویسنده
چکیده
A new fast multipole formulation for the hypersingular BIE (HBIE) for 2D elasticity is presented in this paper based on a complex-variable representation of the kernels, similar to the formulation developed earlier for the conventional BIE (CBIE). A dual BIE formulation using a linear combination of the developed CBIE and HBIE is applied to analyze multi-domain problems with thin inclusions or open cracks. Two pre-conditioners for the fast multipole boundary element method (BEM) are devised and their effectiveness and efficiencies in solving large-scale problems are discussed. Several numerical examples are presented to study the accuracy and efficiency of the developed fast multipole BEM using the dual BIE formulation. The numerical results clearly demonstrate the potentials of the fast multipole BEM for solving large-scale 2D multi-domain elasticity problems. The method can be applied to study composite materials, functionally-graded materials, and micro-electromechanical-systems with coupled fields, all of which often involve thin shapes or thin inclusions.
منابع مشابه
A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems
A new fast multipole boundary element method (BEM) is presented in this paper for large-scale analysis of two-dimensional (2-D) elastostatic problems based on the direct boundary integral equation (BIE) formulation. In this new formulation, the fundamental solution for 2-D elasticity is written in a complex form using the two complex potential functions in 2-D elasticity. In this way, the multi...
متن کاملA dual BIE approach for large-scale modelling of 3-D electrostatic problems with the fast multipole boundary element method
A dual boundary integral equation (BIE) formulation is presented for the analysis of general 3-D electrostatic problems, especially those involving thin structures. This dual BIE formulation uses a linear combination of the conventional BIE and hypersingular BIE on the entire boundary of a problem domain. Similar to crack problems in elasticity, the conventional BIE degenerates when the field o...
متن کاملA new fast multipole boundary element method for solving 2-D Stokes flow problems based on a dual BIE formulation
A fast multipole boundary element method (BEM) is presented in this paper for large-scale analysis of two-dimensional (2-D) Stokes flow problems based on a dual boundary integral equation (BIE) formulation. In this dual BIE formulation, a linear combination of the conventional BIE for velocity and the hypersingular BIE for traction is employed to achieve better conditioning for the BEM systems ...
متن کاملOn the Identities for Elastostatic Fundamental Solution and Nonuniqueness of the Traction BIE Solution for Multiconnected Domains
In this paper, the four integral identities satisfied by the fundamental solution for elastostatic problems are reviewed and slightly different forms of the third and fourth identities are presented. Two new identities, namely the fifth and sixth identities, are derived. These integral identities can be used to develop weakly singular and nonsingular forms of the boundary integral equations (BI...
متن کاملDual BIE approaches for modeling electrostatic MEMS problems with thin beams and accelerated by the fast multipole method
Three boundary integral equation (BIE) formulations are investigated for the analysis of electrostatic fields exterior to thin-beam structures as found in some micro-electro-mechanical systems (MEMS). The three BIE formulations are: (1) the regular BIE using only the single-layer potential; (2) the dual BIE (a) using the regular BIE on one surface of a beam and the gradient BIE on the other sur...
متن کامل